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Abstract

A theoretical equation describing tile elastic-plastic deformation of a cantilever beam subject to a

constant pressure is developed. Tile theoretical result is compared numerically to the computer program
BU('KY for the case of an elastic-perfectly plastic specimen. It. is shown that the theoretical and

numerical results compare favorably in the plastic range. Comparisons are made to another research

code to further validate the BUCKY results. This paper serves as a quality test for the computer

program BUCKY developed at NASA Johnson Space Center.

Introduction

The ability to predict a structure's response to loading is a necessity in the field of structural analysis. Too

often, a structure quickly becomes too complicated to analyze by hand calculations. In addition, when

advanced topics such as material nonlinearity are introduced, the analysis becomes virtually impossible

to perform by hand. In such cases, computer models must be developed to estimate the response of the
structure.

Plastic analysis of structures has been incorporated into several finite element packages. However,

nearly all current finite element programs are based on the/t-version of the finite element metimd; only a

few research codes based on the p-version of the finite element method are known to exist.. The computer

program BI, I(_KY is a multi-element p-version finite element program that has the ability to perform

elastic-plastic studies of structures.

The assumptions used in the development of BUCKY are few; the structure in question must be a

two-dimensional plate structure in a state of plane stress. In addition, the material properties must be

such that the plate is isotropic in nature and has work-hardening abilities. Proportional loading and no

unloading are flmher assumptions of the computer method.

Using the tangent stiffness method, the p-version of the fnite element is ideally suited for problems

of plasticity. It will be shown that the cantilever beam example is effectively described with only two
finite elements.

Problem Statement

We wish to find the exact theoretical deflection for a fixed cantilever beam of length L and thickness h

subject to a uniform statically applied load q0 over the beana span, as shown in Figure 1. As the beam

is loaded, the extreme fibers (z = +h/2) experience higher stresses than the rest. of the heam. Thus,

these areas will yield before the remainder of the beam. The beam is assunmd to have elastic-perfectly

plastic material behavior, as shown in Figure 2.
With increasing toad q0, the beam yields further until eventually the collapse load is reached, at.

which point the deflections at. the beam tip are completely unbounded and a plastic hinge forms at the
base of the beam. We want to deterrnine the deflection of the beam anywhere in the beam and for any

load from the fully elastic state to the collapse state.

Fully Elastic Solution

The problem of an elastic beam under a distributed load is straightforward. The differential equation

describing a uniform beam under a distributed load q(x) is given by

E d4 w
Id--7 = q(x). (1)

The solution to ( 1 ) is simply a matter of integrating ( l ) four times, yielding four constants of integration.

Realizing that. the beam has four boundary conditions (two on each side), these four constants can be

uniquely determined and a unique solution can be found. In our examt)le, the 1)oundary conditions are

w(0) = 0, u/(0) = 0, M(L) = 0, and V(L) = 0, (2)
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Figure 1. Beam model.
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Figure 2. Stress-strain curve for an elastic-perfectly plastic material.

where d2 w
M (x) = E1 dx 2 and V(x) = E1 d3w-- -dx 3 . ( 3 )

lntegraling (l) twice with q(x) = q0 and applying the boundary conditions at x = L, we find

M(x) = qoL 2 ._'-_2 L + " (4)

Integrating (4) twice more and applying the fixed ended conditions yields

w(x) qox_'L2 ( x 2 x I)EI 2_-L 2 6L + (5)

for the displacement of the beam. Equation (5) provides the beam displacement anywhere in the beam

under tim aSSulnption that the beam is comprised of a linearly elastic material.

Moment Due to a Partially Plastic Cross Section

In this section, we coml)ute the moment that is the result of a partially plastic cross section, As the l)a._e

of the beam goes from completely elastic to partially and subsequently fully plastic, the contribution
of the stresses on the moment changes. We can quantify this easily by writing the stress distribution

m a partially plastic section, as shown in Figure 3. The stress distribution shown in Figure 3 can be

described analytically by

-_0, hi2 >__y >_ 71,
,_ = -,_oyl,1, ,I > y > -,1, (6)

ao, -q >_ y > -hi2.

The moment due to this distribution is

Mt,(x ) = 2b (-a)ydy = 2b cro--dy + 2b aoydy
Jo _1

2
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Figure 3. Elastic and plastic zones in a partially plastic cross section.

or

where II is a fimction of x, and b is the width of tile beam.

From equation (8) and Figure 3 it is seen that if i} = h/2, the moment at. that cross section has

achieved the yiehl moment M u, or

a°bh2 (9)
Mu- 6

C,onversely, if the plastic region governed by 1}(x) takes the value of zero, then tile cross section ha._

completely collapsed (section is fidly plastic), and the moment is

aobh _-
Mc - (lO)

4

Ill the elastic-plastic region, the moment at any cross section is bounded by equations (9) and (10).

Displacements of an Elastic-Plastic Cantilever Beam

In this section we use the results of the last two sections to derive the expression for tile beam dis-

placements anywhere in the beam. To find the displacements, we match tile moments of the elastic

and elastic-plastic sections and integrate the resulting differential equation. The integration leads to an

expression for the beam displacements.

Recalling the moment for the fully elastic case and equating it to the moment due to a partially

plastic cross section, we see that

Solving for tile variable 7I, which represents the size of the elastic core in an otherwise plastic region, we
find

Jr 2 T

3 2 3q°L_ ,_-ff2 L + (12)q = ¢r0b

From (12), we can predict the extent of the plastic zone anywhere in the beam.
Next, we write that the strain due to bending of the plate is given by the expression

d2w o"

e = z--_-z2 = _. (13)

In regions of the beam where the cross section is partially plastic, equation (13) becomes

d 2Wp oo o"o
-- = -- = --. (14)
dx "- Ez Eli



Equation (14) provides a differential equation for the curvature of the beam in the partially plastic zone.

Tile parameter 71in (14) is given by equation (12). Thus, the differential equation to solve is

3qoL 2 f__x 2 x 1,] -./2

)J (1._)</-_,,,,,_ _,0[a_2(Ix = E

subject to the boundary conditions

u,_,(0) = 0
t

and wp(O) = 0. (16)

The solution to (15) is not trivial, but it can be found analytically. Integrating (15) twice suhjeet to the

boundary conditions (16) yields

,,,,,(.) _ 1 r, v .0heb,,v.0 (z .,n-I + , -- (Z-')'

V -0b) 7V 7_7ob \TV 77_ob)- -0m,'-') J" (17)

[qnation (17) can only be used where the beam is partially (or full)') plastic. Recall that the elastic

core in the plastic zone is denoted by the variable 7/. liYhen l l : hi2, the beam is entirely elastic. Proln

equation (12)> we see that this transition occurs at the location

h _ob

,,A=LI-TV (is)

As long as the beam position is less than x*, equation (17) can be used to compute the heam deflection.

Equation (17) provides the exact solution to the differential equation (15) subject to the boundary

conditions (16) in the partially plastic zone. However, the entire beam is not in a plastic state; the
majority of the beam is in a fully elastic state. For this region, we apply to the problem the traditional
beam solution used earlier. If we compute tile differential equation for a beani with no moment or shear

at its end, we find

w'(x)- q°xL2 2_--_-6-_+6 +('3 (19)Ebh a

aild

w(x) qox2L2 ( x 2 x )Ebha _,-2_+3 +C3x+(.'4. (20)

To find the constants of integration Ca and (74, we n, ust apply the condition that tile slope and displace-

ment of the beam at. the transition point x* are equal in the partially i)la-stic and fnlly elastic zones.

That is, we compute the displacement in the plastic zone from (17) at the point x* an({ set that equal
to the displacement given by (20) at x*. Additionally, we equate the slope of equation (19) to that of

the derivative of (17) at. x*. The two conditions, then, yield expressions for the integration constants,

snch that

and

q0a:*L 2 [ a..2 x* )C3 - Ebh3 t2TT - 6--/- + 6 + w_,(x*) (21)

('4 q°x*2L: (x*2 x* ) c, a'" "- _bh= \g-L-_-- 2T + a - ,,,, + _,,,(,.) (22)

where

v_(r_)bh fl 2/'_sin_ l rL, 2/_- x )] 1 2/_sin_ i (L 2/'_'_'_ (23)w_,(x)- 3Eqo I. hV(rob LT,Vb-Tb(Z -I +T, V77_@ T,v_ob)J

To cornl)ute the displacements in the beam, we use equation (17) in the region [0,x*] and (20) in the

region [x*, L].
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Figure 4. Elastic-plastic cantilever beam model.

BUCKY Finite Element Model

To perform the plastic analysis numerically, the computer progran, BUCKY was used with its elastic-

plastic analysis capabilities. Utilizing the tangent stiffness method of plasticity analysis, BU(!KY is a p-

version finite element method program capable of accurately predicting the response of simple structures

to applied loads. The p-version finite element method is a highly accurate method that exploits the

qualities of higher order smooth functions to describe large gradients. Traditional h-finite elements have

a general lack of detail ill this regard unless very fine meshing is employed.
The finite element model used to verify the plastic analysis of BUCKY is shown in Figure 4. Note

that only two elements are employed in the solution of the problem. OI)viously the p-method has the

tremendous advantage of simplified modeling. The element labeled El has a size of the same order of the
beam thickness. The small size of the element allows us to accnrately trace the elastic-I)lastic boundary.

The second element, E2, is much larger since we expect it to remain elastic. Even if this element were

to become partially plastic, BUC, KY would 1)e able to effectively show this.

Tlle physical parameters of the beam in Figure 4 are such that the length L = 10, the thickness h = 2,

and the width w = 1. In addition, the beam material has some Young's modulus EIOE6 associated with

it, as well as a yield strength of _r0 = 50000. Finally, since the material is elastic-perfectly plastic, the

tangent naodulus ET is identically zero.
The load q0 of Figure 4 is varied so that the beam can 1)e compared to theoretical predictions at. a

variety of states. One caveat to the BUCKY analysis is that BUCKY is a two-dimensional finite element

code, whereas the theory used to predict the beam deflection above is based upon a reduction from the

full three-dimensional equations of elasticity to one dimension. The comparisons, however, will be shown
to be close.

Comparison to Theoretical Results

There-are four comparison points given by the loads qo = 667, q0 = 800, q0 = 900, and q0 = 1000.
For the l)ea_li ]ruder Considerati0nl the [Oad qo-=-6-(_'-corresi)onds to the distribtited load at which tile

beam first experiences a plastic effect. The first occurrence of a plastic component of stress is at. the

tol) and bottom outer fibers at the wall. The]oaffq0 = 1000 represents the theoretical collapse load of
the beam. That is, at this load, the plate forms a fully plastic core and plastic hinge at. the I)eam-wall

interface. This gives unl)ounded deflections and the stiffness in some points of the beam quickly goes to
zero. Numerically, this means singular element stiffness matrices, which is an undesirable effect.

At the moment the beam first reaches a yield point, tile al)plied load takes the value q0 = 667. At

this point, the BUCKY analysis c0n-q)ares Well to another benchn-tark, the PEGASYS finite elernent

package. PE(IASYS is a p-version finite element program based on secant modulus principles. However,

both programs deviate from tile elastic-plastic solution and fldly elastic solution. Figure 5 shows the four
deflections based on theoretical predictions for elastic, elastic-plastic, and the two conq)uter programs.

The deflections throughout the beam are shown.
As the load increases to qo = 800, the extent of the plastic zone increases somewhat.. Figure 6

shows that. the beam tip deflection increases slightly for an increase in the load q0. Whereas in tile
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Figure 5. Deflections of an elastic-perfectly plastic cantilever for q0--667.
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Figure 6. Deflections of an elastic-perfectly plastic cantilever for q0=800.

first case where the theoretical predictions for the tip deflection were nearly equal for tile elastic and

i)lastic analysis, we now see in Figure 6 that the elastic solution underpredicts the deformation. This is
because a linear elastic anaylsis cannot model material nonlinearities. We also see in Figure 6 that the

two computer codes again give similar results.
As the load is increased further to qo = 900, BUC, KY predicts the highest tip deflection. The

deformations for this case are shown in Figure 7. Finally, in Figure 8, the deflections in the beam at

full collapse are shown. The load at. full collapse is q0 = 1000. At this point, we see a close agreement
) -_ • •

between the theoretical predictions and the computer analysis. We also see that the t E(,ASYS code

underl)redicts the deformation slightly. Of course, the elastic solution trails well below the elastic-plastic
solutions. As the material becomes plastic, the modulus decreases rapidly, resulting in larger deflections.

Finally, in Figure 9, we show the elastic-plastic boundary at the theoretical collapse load q0 = 1000.

The boundary is given by the light, band on the left. side of the beam. The plastic region is the darker area
on the left side of the beam. Notice that the cross section at the wall is not completely plastic. Because

of the manner in which the stress updates are generated at the element Gauss points, BUCKY can only

conipute an approximate stress at points deviating from the Gauss points. The stresses are found by

determining an equation over the element which describes the stresses exactly at the Causs points. All

other points within the element have potential error. However, even though the stress distribution at
the wall is not in a cornpletely plastic state, the stress distrihution throughout the beam does have the

=_ expected shape.
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Conclusions

As was seen from the exanq)le of tile cantilever 1)earn, the theoretical solution and the computer solution

agree closely. At most, the tip deflections disagree by no more than a few percent. This error is

remarkable considering that only two elements were used in the finite element analysis. Had more

elements been utilized, the number of degrees of freedom would have increased and the error would [lave

decreased filrther. Indeed, the BUCKY model could have been extended to four elements (two element

by two element mesh) to trace the plastic boundary better.

From the example problem, it has been shown that BUCKY is an effective tool for tile analysis of

structures involving material nonlinearities. The p-version of the finite element method ha.s proven its

value with linear static analysis, and the same exceptional behavior is exhibited in nonlinear 1)rol)lems as

well. By contrast, the convergence properties of traditional h-version finite elements yield poorer results

for the same number of equations used in the BUCKY analysis.



Figure 9. Von Mises stress distribution at theoretical collapse load.
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